"During the 20th century, we came to understand that the essence of all substances - their colour, texture, hardness and so forth - is set by their structure, on scales far smaller even than a microscope can see. Everything on Earth is made of atoms, which are, especially in living things, combined together in intricate molecular assemblages." -Martin Rees

The more we continue to learn about the science we continue to make discoveries in biology, physics and chemistry. We have continued to learn more about the reproductive system, the fact that the earth is round, gravity and that everything is made up of atoms. Learning more about atoms can be highly interesting. It plays a big role in understanding physics.

Physics in high school can be a questionable topic for students to enroll in. There are lots of different topics students have to understand. We have created a series of articles that will help students decide if physics is right for them. Each article covers a number of different topics that students can expect to learn in the High School Physics Syllabus. We will now focus on the fourth topic of atomic structure and what is learnt in this section.

The best Physics tutors available
1st lesson is free!
Priyal
4.9
4.9 (12 reviews)
Priyal
$17
/h
1st lesson is free!
Matthew
4.9
4.9 (17 reviews)
Matthew
$37
/h
1st lesson is free!
Hamid
5
5 (65 reviews)
Hamid
$70
/h
1st lesson is free!
Tai
5
5 (20 reviews)
Tai
$45
/h
1st lesson is free!
Muhammad
5
5 (5 reviews)
Muhammad
$20
/h
1st lesson is free!
Moos
5
5 (16 reviews)
Moos
$45
/h
1st lesson is free!
Stewart
4.8
4.8 (10 reviews)
Stewart
$50
/h
1st lesson is free!
Tania
5
5 (24 reviews)
Tania
$25
/h
1st lesson is free!
Priyal
4.9
4.9 (12 reviews)
Priyal
$17
/h
1st lesson is free!
Matthew
4.9
4.9 (17 reviews)
Matthew
$37
/h
1st lesson is free!
Hamid
5
5 (65 reviews)
Hamid
$70
/h
1st lesson is free!
Tai
5
5 (20 reviews)
Tai
$45
/h
1st lesson is free!
Muhammad
5
5 (5 reviews)
Muhammad
$20
/h
1st lesson is free!
Moos
5
5 (16 reviews)
Moos
$45
/h
1st lesson is free!
Stewart
4.8
4.8 (10 reviews)
Stewart
$50
/h
1st lesson is free!
Tania
5
5 (24 reviews)
Tania
$25
/h
First Lesson Free>

Models of the Atom

Models of the atom are the first topic that needs understanding when learning about atoms. They'll understand the basic models of the atom and how atoms are the building block of matter. The first to develop the early ideas of the atom were the Greeks. They thought that matter was made up of thousands or millions of tiny uncuttable pieces and they called these pieces "atomos" which means uncuttable in Greek. Centuries later English physicist JJ Thomson, who discovered the electron, suggested that atoms look like plum pudding and that solids cannot be squashed, therefore, the atoms which make the solid matter must be completely solid.

A popular physics experiment students can expect to complete is the gold foil experiment done by Ernest Rutherford and his associates to test the plum pudding model. This experience was done by directing a beam of alpha particles (a form of nuclear radiation with a large positive charge) at a very thin gold foil that was suspended in a vacuum. Rutherford and his associates strongly believed that the alpha particles would pass straight through the foil and puncture it. However, the opposite happened with very few alpha particles passing through the foil. Rutherford concluded that the atom is mostly empty space and that there is a concentration of positive charge in the atom.

Rutherford and Thomson were not the only pioneers in the field of physics. In this section, pupils learn about further developments to the atomic model. Bohr and his study of energy levels and James Chadwick with his investigation of the neutron are further examined in this first part of the atomic structure topic.

 

Atoms, Isotopes and Ions

the atomic structure
Every atom is made up of electrons, neutrons and protons. (Source: pixabay)

Atoms

Atoms are extremely small in size and have a radius of approximately 1 × 10-10 metres. An atom has a nucleus containing protons and neutrons with smaller electrons that circle around the nucleus. Each particle has its own mass and its own charge:

 ChargeMass
Electron+11
Neutron01
Proton-1Almost 0 or (1/2,000)

Protons and neutrons are the heaviest particles in an atom and the total number of them in an element is known as the mass number and the number of protons by themselves is called the atomic number. 

The mass number and atomic number and both essential pieces of information about an atom. Atoms can be represented using the following symbol:

_{Z}^{A}\textrm{X}

In this symbol A is the mass number, Z is the atomic number and X is the symbol or element. The numbers can be examined on the periodic table of elements which shows how many particles are in the nucleus and how many protons each element has.

Isotopes

In this section, students will also discover what exactly isotopes are.  They are the forms of an element that have the same number of protons but different numbers of neutrons. For example, chlorine has two isotopes and carbon has three.

Ions

Atoms are normally neutral and have the same number of protons in the nucleus as they have electrons spinning around. Nevertheless, there are always exceptions. These exceptions can possibly occur when there is a loss or gain of electrons after a collision. When this happens, little particles are created and are called ions. Ions can either be positively or negatively charged. They are positively charged if the atom loses one or more electrons and they are negatively charged if the atom gains one or more electrons.

The best Physics tutors available
1st lesson is free!
Priyal
4.9
4.9 (12 reviews)
Priyal
$17
/h
1st lesson is free!
Matthew
4.9
4.9 (17 reviews)
Matthew
$37
/h
1st lesson is free!
Hamid
5
5 (65 reviews)
Hamid
$70
/h
1st lesson is free!
Tai
5
5 (20 reviews)
Tai
$45
/h
1st lesson is free!
Muhammad
5
5 (5 reviews)
Muhammad
$20
/h
1st lesson is free!
Moos
5
5 (16 reviews)
Moos
$45
/h
1st lesson is free!
Stewart
4.8
4.8 (10 reviews)
Stewart
$50
/h
1st lesson is free!
Tania
5
5 (24 reviews)
Tania
$25
/h
1st lesson is free!
Priyal
4.9
4.9 (12 reviews)
Priyal
$17
/h
1st lesson is free!
Matthew
4.9
4.9 (17 reviews)
Matthew
$37
/h
1st lesson is free!
Hamid
5
5 (65 reviews)
Hamid
$70
/h
1st lesson is free!
Tai
5
5 (20 reviews)
Tai
$45
/h
1st lesson is free!
Muhammad
5
5 (5 reviews)
Muhammad
$20
/h
1st lesson is free!
Moos
5
5 (16 reviews)
Moos
$45
/h
1st lesson is free!
Stewart
4.8
4.8 (10 reviews)
Stewart
$50
/h
1st lesson is free!
Tania
5
5 (24 reviews)
Tania
$25
/h
First Lesson Free>

Radioactive Decay

If nuclei have an incorrect number of neutrons they can quickly fall apart. This is also called radioactive decay.

Attaining Stable Nuclei

The nucleus of an atom can only be stable if it has a certain amount of neutrons for the number of protons it has. Elements that have very few protons and that can be found near the top of the periodic table are stable if they have the same number of neutrons and protons. Nevertheless, it is important to note that as the number of protons increases, more neutrons are needed to keep the nucleus stable and troubles at bay!

Nuclear Radiation

radiation
Alpha, beta and gamma are all types of nuclear radiation and they have unique properties that can be compared in different ways. (Source: pixabay)

A nucleus can discharge a package of two protons and two neutrons called an alpha particle. The alpha decay causes the mass number and the atomic number of the nucleus to drop by four and two respectively.

If the poor little nucleus is overwhelmed and has too many neutrons, a proton transforms into a neutron and emits a fast-moving electron. This entire process is known as beta radiation. Beta decay will cause the atomic number of the nucleus to raise by one and the mass number stays the same.

When an alpha or beta particle is discharged, most often than not the nucleus will be too hot and will lose energy. The nucleus will try to cool down and while doing so it will emit a very energetic electromagnetic wave called a gamma ray. The atomic number and mass number remain the same during gamma-ray emission.

If you are looking for more information about radiation check out this link; reliable websites online.

Half life

Radioactive decay is a very random process. Not all nuclei will decay at the same time. Scientists cannot precisely calculate when the particular nucleus will decay but graphs and estimates can be used to arrive at an educated guess. Half life, which is the time it takes for half of the unstable nuclei to decay or for the activity to halve, can be used to determine the radioactive decay. The count rate is the number of decays recorded each second by a detector such as the Geiger-Muller tube.

Uses and Dangers of Radiation

Radiation can be extremely dangerous if it is not handled correctly. High amounts of radiation can be lethal. Here are some of the dangers, but also how we use radiation in a helpful way.

Irradiation

Exposing objects to beams of radiation is called irradiation and can damage living cells. Nevertheless, it can be put to good use or become a hazard depending on how it is utilized.

Some of the ways it can be used include the following:

  • Sterilizing fruit to preserve it when sold in supermarkets. Do not worry this process of irradiation does not cause the fruit to become radioactive!
  • Medical irradiation can be used to sterilize surgical instruments and a tool known as a gamma knife can be used to kill tumours that are deep inside a patient's body.

Contamination

underground water leaks
Contamination radiation can be used to find leaks in the pipes of the underground water supply. (Source: pixabay)

This occurs when an object has a radioactive material introduced into it. It can be very useful or extremely harmful. The most common uses of contamination radiation are as follows:

  • Medical contamination: injected radioactive sources can be used to make soft tissues such as blood vessels or kidneys. Medical image processing and x-rays are possible when an isotope emits gamma rays through the body to a detector outside.
  • Checking for leaks: if the local government is suspicious of pipe leaks in the water supply, it can be contaminated with a gamma-emitting radioactive isotope to find the leaks. Leaks can be identified when contaminated water seeps into the ground and causes a build-up of gamma emissions. This makes it easier to find the leak.

Students in the section compare irradiation versus contamination due to the fact that they are often mistaken for one another.

Background Radiation

Radioactive material occurs naturally and we are exposed to low levels of radiation per day. This can be from radon gas or objects like microwaves. However, high amounts of radiation can be lethal.

Radiation can be easily calculated by using Becquerel (Bq) which is the measure of the activity and the nucleus. 

Nuclear Fission and Fusion

The nuclei of atoms most definitely contain a lot of energy. If this energy would be realized it would prevent the world from using so many fossil fuels. This can be done by using nuclear fission and nuclear fusion.

Nuclear Fission

Nuclear fission is the spilling of a large atomic nucleus into smaller nuclei. After the spilt, there are lots of other reactions that may occur. This is known as a chain reaction.  This happens so that the energy can pass to other parts of the nuclear reactor. A fission reactor has a wide variety of parts that each have their own specific function and this learnt by the pupil in this section of the High School Physics Syllabus.

Nuclear Fusion

Nuclear fusion occurs when two small and light nuclei join together to make one heavy nucleus. The simplest of nuclear fusion is when four hydrogen nuclei become one helium nuclei.

Discover various physics lessons on Superprof.

Sample Exam Questions for Atomic Structure

The first four topics of the High School Physics Syllabus are tested together and later on the last four are studied to mark the end of this High School subject. There are certain questions that can be expected on the assessment. Here are the different types of exam questions:

  • Multiple choice questions,
  • One and two mark questions,
  • Three and four mark questions,
  • Maths questions,
  • Six mark questions,
  • Equations.

The bitesize study guide from the BBC can prepare students for what questions may be on their examination by providing examples and explanations.

Studying the different sections of the atomic structure topic can prove to be very interesting and diverse. A thorough explanation of an atom, radioactive decay or uses of radiation is all covered in the High School Physics Syllabus and can be great fun for science enthusiasts!

Atomic structure is just one of the eight topics covered in the GCSE Physics Syllabus, the other seven include energy, electricity, particle model of matter, forces, waves, magnetism and electromagnetism and space physics.

Need a Physics teacher?

Enjoyed this article?

5.00/5 - 1 review(s)
Loading...

Chester

You can usually find me writing at a cafe sipping on coffee or working out at the gym. I fell in love with writing a few years ago and have never looked back. I love being able to share my words with the world.